Жизнь хитра! Когда у меня на руках все карты - она внезапно решает играть в шахматы…
Ученые из ETH Zurich (Швейцарской высшей технической школы Цюриха) разрабатывают робота-пса SpaceBok, который будет способен передвигаться в условиях лунной гравитации. Первое видео с ним уже показали.
читать дальшеНа данный момент робот-пес SpaceBok проходит тестирование в лаборатории. Он уже может подпрыгнуть до 2 м в высоту в условиях лунной гравитации. При прыжке он отрывает все четыре ноги одновременно. Инженеры отмечают, что это умение позволит ему передвигаться максимально быстро по лунной поверхности.
Стоит отметить, что гравитация Луны в 6 раз слабее, чем гравитация Земли. Поэтому передвигаться по поверхности Луны достаточно сложно, но, по мнению инженеров из ETH Zurich, роботу SpaceBok это будет по силам.
Я отвечаю за то, что говорю, но не отвечаю за то, что вы слышите.
В 1973 году Британское межпланетное общество — первая и старейшая организация, целью которой были заявлены исключительно космические исследования, развитие и поддержка космонавтики, — запустило масштабный пятилетний проект по поиску и созданию наиболее перспективного дизайна беспилотного космического аппарата, предназначенного для межзвездных путешествий. Первым среди предложенных решений стал «Дедал». Данный план выглядел еще более амбициозным и ставил ключевой целью поиск возможности для пилотируемых путешествий к различным звездам с прицелом использования технологий ближайшего будущего.
Как достигнуть нужной скорости, накопить достаточный объем энергии и при этом не спалить космический аппарат и находящихся на его борту людей дотла? Задачи явно не из простых. Команда проекта «Дедал» пришла к решению использования кратковременного ядерного ускорения, которое позволило бы преодолеть подобные сложности. Предложенная система работала примерно таким образом: внутри параболических магнитных полей, расположенных позади космического корабля, будут производиться небольшие термоядерные взрывы, чья энергия будет ускорять космический аппарат с максимально возможным уровнем КПД.
Конечно, для реализации межзвездных путешествий потребуется сперва придумать, как разогнать космический аппарат до скорости свыше 10 000 километров в секунду. Но это лишь часть проблемы. Второй вопрос в том, кто в таком случае будет управлять кораблем? В качестве вероятного решения рассматривалась возможность использования независимой системы автопилотирования. В качестве топлива для реакторов предлагалось использовать изотоп гелий-3, который можно добыть в атмосфере Юпитера или прямо на поверхности Луны.
В конечном итоге в окончательном отчете 1978 года было громко заявлено, что межзвездные перелеты действительно возможны, но к созданию рабочего прототипа инженеры так и не приступили.
Тем не менее назвать проект «Дедал» несбыточной мечтой было бы преждевременно. Многочисленные отчеты говорят о том, что современные космические агентства и университеты мира продолжают изучение идей использования ядерной энергии в качестве движущей силы космических аппаратов, заложенных еще проектом «Дедал» более 30 лет назад.
Члены Британского межпланетного общества и фонд Tau Zero в 2009 году приступили к проекту «Икар», цель которого заключается в теоретической оценке возможности создания космического аппарата с термоядерным двигателем, предназначенным для межзвездных путешествий. Впоследствии результаты работы могут превратиться в проектирование непилотируемой космической миссии.
В проекте принимали участие более 20 ученых и инженеров. Их задачей была попытка спроектировать двигательную установку, основанную на термоядерной реакции и способную обеспечить разгон корабля до 10—20% от скорости света. По сути, в основу «Икара» лег проект «Дедал», но в дальнейшем «Икар» должен был стать самостоятельным проектом, лишь с очень незначительным заимствованием элементов «Дедала». «Икар» планировалось завершить еще в 2014 году, но работа по-прежнему продолжается. В настоящий момент организаторы ищут добровольцев, которые смогли бы его завершить.
Планетарное общество запустило проект под названием «Световой парус» (LightSail) для изучения возможности разработки космического аппарата, работающего полностью на солнечной энергии и ускоряемый исключительно солнечным светом. После нескольких неудачных попыток программы LightSail 1 в 2015 году все же удалось успешно завершить пробный запуск и раскрытие солнечного паруса. Новый вариант солнечного паруса, LightSail 2, планируется вывести на орбиту Земли с помощью ракеты SpaceX Falcon Heavy в 2018 году.
Концепт использования солнечного паруса в качестве двигательной системы далеко не нов. Еще с открытием первых фотонов такие астрономы, как Иоганн Кеплер, еще в 1600-х годах начали мечтать и теоретизировать на тему возможности сбора солнечной энергии и перевода ее в импульс для наделения другого объекта ускорением.
Современные ученые не утратили этого желания. Взять хотя бы Стивена Хокинга и его проект под названием Breakthrough Starshot. В рамках своего недавнего пребывания в Норвегии Хокинг рассказал о том, как небольшой космический зонд смог бы «путешествовать верхом на луче света» со скоростью около 160 миллионов километров в час. Разумеется, как и любому амбициозный проекту, Breakthrough Starshot придется сначала преодолеть и не менее амбициозные проблемы, перед тем как что-то может получиться.
В 1960-м году американский физик Роберт Бассард представил концепт межзвездного космического аппарата, способного передвигаться с невероятной скоростью. В его основе лежит система, способная производить захват вещества межзвездной среды (водорода и пыли) и использовать его в качестве топлива в термоядерном двигателе корабля.
Согласно расчетам Бассарда, двигателю для работы потребуется забор межзвездного вещества с площади, равной почти 10 000 квадратным километрам. Для этого, в свою очередь, потребуется использование электромагнитного (электростатического ионного) собирающего коллектора огромного диаметра и чрезвычайно большой напряжённости поля. Дальнейший анализ, тем не менее, показал, что масса собираемого вещества была бы в этом случае все равно настолько низкой, что это ставило бы под сомнение эффективность системы.
Использование изотопов водорода в качестве топлива для ядерной реакции и производства необходимой тяги для межзвездных путешествий стало несбыточной мечтой. Новым же направлением развития были выбраны ракетные ускорители на антиматерии, где взаимодействие между обычной материей и антиматерией вызывает аннигиляцию обоих и создает при этом колоссальный уровень энергии.
Если представить возможность направленного выпуска огромного объема этой энергии, то создаваемый энергетический взрыв, вызываемый взаимной аннигиляцией сталкивающихся между собой атомов, можно было бы использовать в качестве рабочего тела для движения космического аппарата. Однако мы пока далеки от возможности провести такие испытания в реальных условиях.
Кроме того, использование антиматерии в качестве топлива для ракетных двигателей будет накладывать целый ряд ограничений: во-первых, в результате реакции будет создаваться невероятно высокий уровень гамма-излучения; во-вторых, сложно получить достаточный объем антиматерии; и в-третьих, становится весьма ограниченным объем возможной полезной нагрузки, которую можно взять с собой.
Тем не менее Институт разработки перспективных концептов NASA вложил средства в исследования вероятности создания космического аппарата на антиматерии, который будет лишен по крайней мере первой вышеуказанной проблемы. По мнению исследователей, если использовать в качестве основного элемента антивещества позитроны (античастицы электронов), то энергетические показатели гамма-лучей будут гораздо ниже.
Еще одно исследование позволяет решить вторую проблему в списке, путем использования так называемого паруса на антиматерии. Создателем этого концепта является Геральд Джексон, бывший физик компании Fermilab. Джексон предложил провести кампанию по сбору средств на площадке Kickstarter. Для создания и проверки рабочего прототипа было необходимо около 200 000 долларов. Однако фактическая сумма реализации и внедрения этой технологии потребует, разумеется, гораздо больших финансовых затрат.
Аэрокосмическое агентство NASA предложило свой вариант «стартрекоподобного» космического корабля с возможностью варп-ускорений в 2016 году. В представленных фотографиях можно без труда разглядеть детали корабля USS Enterprise из культовой киновселенной. Создатель концепта Марк Родмейкер поделился в интервью Washington Post о том, что целью данной работы было вдохновить молодых людей выбрать карьеру инженера по разработкам космических аппаратов.
Согласно концепту данного проекта, корабль IXS Enterprise использует не ядерную реакцию и антиматерию для перемещения в пространстве, а варп-двигатель. Большие кольцеобразные структуры вокруг корабля создают «варп-пузырь», который сокращает объем энергии, необходимый для работы варп-двигателя.
Наконец-то найдены неопровержимые доказательства лунной программы - те самые оригиналы видеозаписей высадки, которые совершенно случайно 50 лет назад были потеряны. Так как их совершенно случайно продали на аукционе за ненадобностью или просто перепутав надпись "строго секретно" с "совершенно ненужно". На котором их совершенно случайно купил стажер НАСА. Которые совершенно случайно пролежали у него 40 лет, пока весь мир их искал. Пролежали, несмотря на надпись APOLLO 11 на трех бобинах, что ни разу не заставило его задуматься, но совершенно случайно он хранил их на всякий случай, вдруг пригодится.
Которые совершенно случайно не разрушились временем (надежность самой лучшей магнитной ленты того времени составляет 300 тыс часов, то есть 34 года). Которые восстановили без потери качества, найдя технику для воспроизведения в 2019 году и не найдя в 1979м. С которых была снята цифровая копия и жесткий диск с оцифровкой будет выставлен на аукцион за 700 тыс долларов, совершенно случайно вместо самих оригиналов. Возможно, даже будет видеоформат Full HD и весь мир наконец-то увидит неопровержимые доказательства, совершенно случайно появившиеся к пятидесятилетию высадки, совершенно случайно в эру феерично реалистичной виртуальной реальности.
В статье прекрасно всё. Шах и мат вам, сторонники теории заговора и прочие параноики!
Тур на космодром Байконур с наблюдением из самой ближайшей точки космодрома за запуском космического корабля «Союз МС-15» Войдет в историю запусков! Это будет последним запуском с пл№1 «Гагаринского старта» Успейте подать заявку сейчас. На 25.09.2019.
Я отвечаю за то, что говорю, но не отвечаю за то, что вы слышите.
Сложно поверить, что в начале XX века ученые считали, что наша галактика - уникальна. Сегодня же астрономам известно около 125 миллиардов галактик. Представляете сколько это звезд? Сколько планет? Сколько нам ещё предстоит открыть?
читать дальшеОпределить точную массу всех этих галактик невозможно и астрофизики лишь изредка прибегают к теоретическим расчетам, чтобы хотя бы примерно понимать, с чем им приходится иметь дело.
А теперь представьте себе «Нечто» .
«Нечто» настолько далекое, что этого даже не разглядеть в самый мощный телескоп. При этом, «нечто» должно быть невероятных размеров, просто колоссальных. Попробовали вообразить? Смелей, не бойтесь масштабов.
Это гигантское и очень далекое «нечто» существует, и вряд ли чьей-то фантазии хватит, чтобы осознать его размер . Кроме того, что эта структура существует, она еще и притягивает к себе все объекты, находящиеся в его области влияния. Это «нечто» астрофизики называют Великим аттрактором — самым ужасным местом во Вселенной!
Фиксация движения.
В окрестностях Млечного Пути, в радиусе 1,5 млрд. световых лет, находится около 130 сверхскоплений галактик. Вся эта масса находится в постоянном движении в неком направлении. Куда все это движется?
Млечный Путь в компании галактик из созвездия Девы, является частью сверхскопления галактик созвездия Волосы Вероники. Представьте себе на минутку эти масштабы, осознайте нашу ничтожность.
Вся эта космическая "махина" летит со скоростью 600 километров в секунду в одном направлении. То есть имеется источник гравитации таких размеров, что даже фантазии всего человечества не хватит, чтобы его описать. Это «Нечто» или же Великий аттрактор, крупнее сотен и тысяч галактик вместе взятых. Аномальный, загадочный монстр Вселенной.
Когда астрофизики поняли, что мы движемся к неизвестному источнику гравитации, они попытались рассчитать его массу. Очень грубые результаты исследования указывают на то, что масса Великого аттрактора больше, чем десятки тысяч самых крупных галактик.
Видимая часть Вселенной "засасывается" в какую-то невидимую воронку. Как много материи уже поглотил Великий аттрактор? Технологии не позволяют нам заглянуть настолько далеко и понять, что же там скрывается на самом деле. По этой причине, он является максимально таинственным объектом.
Что будет с нами, когда мы доберемся до места назначения? Никто не знает.
Великий аттрактор является самым крупным объектом во Вселенной, и у исследователей нет никакой возможности изучить его в деталях и описать его природу. Притяжение такой силы не укладывается в голове даже у тех, кто каждый день изучает удаленные уголки Вселенной через телескоп.
Может быть там, за границей пространства-времени существует некая грандиозная структура, которая является частью Великого аттрактора? Может быть там огромное скопление темной материи, которая оказывает влияние на все вокруг?
Мультивселенная.
Пожалуй, только теория Мультивселенной позволяет наиболее логично объяснить присутствие Великого аттрактора. Мультивселенная подразумевает существование бесконечного числа Вселенных, где наша является лишь малой частью. Вселенные расположены настолько плотно друг к другу, что периодически начинают "соприкасаться".
Вдруг наша Вселенная "дала течь" и нас начинает затягивать в другую Вселенную из-за перепада «давления»? Конечно, это лишь гипотеза, но заставляет включить воображение и рассуждать.
Все это безумно странно и существование Великого аттрактора не поддается осмыслению. А пока вы читали этот материал, мы стали ближе к Великом аттрактору более, чем на 100.000 километров. Приятного полета, друзья.
согласно классической астрофизике, через несколько сотен миллионов лет мы перестанем видеть даже те звезды, что видим, так как они будут удаляться от нас быстрее скорости света. Свет от них долетать до нас просто не будет успевать, пространство будет расширяться быстрее. Наука такая затейница...
Я отвечаю за то, что говорю, но не отвечаю за то, что вы слышите.
Когда Альберт Эйнштейн впервые установил, что свет движется с одинаковой скоростью по нашей Вселенной, он, по сути, установил ограничение скорости на 299 792 458 метров в секунду. Но это не конец. На самом деле это только начало. До Эйнштейна масса — атомы, из которых вы, я и все вокруг состоим — и энергия рассматривались как отдельные величины. Но в 1905 году Эйнштейн навсегда изменил способ физического восприятия Вселенной.
Специальная теория относительности связала массу и энергию вместе в простом, но фундаментальном уравнении E=mc^2. Это маленькое уравнение означает, что никакая масса не может двигаться так же быстро, как свет, или быстрее.
читать дальшеЧеловечество ближе всего подходило к пределу скорости света в мощных ускорителях частиц вроде Большого адронного коллайдера и Тэватрона. Эти колоссальные машины ускоряют субатомные частицы до 99,99% скорости света, но, как объясняет нобелевский лауреат по физике Дэвид Гросс, эти частицы никогда не достигают космического предела скорости.
Для этого понадобится бесконечное количество энергии, а масса объекта станет бесконечной, что невозможно. (Частицы света фотоны могут двигаться со скоростью света, потому что массы не имеют).
После Эйнштейна физики обнаружили, что некоторые величины могут достигать сверхлюминальных (или сверхсветовых) скоростей и по-прежнему соблюдать космические правила, установленные специальной теорией относительности. Хотя это не опровергает теорию Эйнштейна, оно дает нам представление о своеобразном поведении света и квантовом пространстве.
Световой эквивалент звукового удара.
Когда объекты движутся быстрее скорости звука, они создают звуковой удар. Таким образом, в теории, если что-то движется быстрее скорости света, оно должно производить нечто вроде «светового удара».
По факту этот световой удар происходит ежедневно и по всему миру — его можно даже увидеть глазами. Он называется излучением Черенкова (эффектом Черенкова — Вавилова) и выглядит как голубоватое свечение внутри ядерных реакторов.
Излучение Черенкова названо в честь советского ученого Павла Алексеевича Черенкова, который впервые измерил его в 1934 году и был удостоен Нобелевской премии по физике в 1958 году за свое открытие.
Излучение Черенкова светится, потому что ядро реактора погружено в воду с целью охлаждения. В воде свет движется медленнее, его скорость составляет 75% скорости света в вакууме космоса, но электроны, которые рождаются в процессе реакции внутри ядра, движутся в воде быстрее света.
Частицы вроде этих электронов, которые превосходят в скорости свет в воде или какой-либо другой среде вроде стекла, создают ударную волну, подобную ударной волне от звукового удара.
Когда ракета, например, проходит через воздух, она генерирует волны давления перед собой, которые толкают воздух со скоростью звука, и чем ближе ракета к звуковому барьеру, тем меньше времени остается у волн, чтобы уйти с пути объекта. Достигнув скорости звука, ракета смалывает волны в кучу, создавая ударный фронт, который приводит к мощному звуковому удару.
Аналогичным образом, когда электроны движутся сквозь воду со скоростью, превышающую скорость света в воде, они порождают ударную волну света, которая иногда светится синим цветом, но может светиться и в ультрафиолете.
Хотя эти частицы движутся быстрее света в воде, на деле же они не нарушают космического ограничения скорости в 300 000 км/с.
Когда правила не учитываются.
Не стоит забывать, что специальная теория относительности Эйнштейна утверждает, что ничто с массой не может двигаться быстрее скорости света; и, насколько физики могут утверждать, вселенная соблюдает это правило. Но как быть с тем, что без массы?
Фотоны по своей природе не могут превзойти скорость света, но частицы света — не единственные безмассовые вещи во вселенной. Пустое пространство не содержит материальную субстанцию, а значит не имеет массы по определению.
«Поскольку ничто не может быть более пустым, чем вакуум, он может расширяться быстрее скорости света, поскольку ни один материальный объект не нарушает световой барьер, — считает астрофизик-теоретик Мичио Каку. — Таким образом, пустое пространство, безусловно, может двигаться быстрее света».
Физики считают, что так и произошло сразу после Большого Взрыва в эпоху инфляции, которую впервые предположили физики Алан Гут и Андрей Линде в 1980-х годах. В течение триллионной триллионной доли секунды Вселенная умножалась на два в размерах и в результате расширилась экспоненциально очень быстро, значительно превысив скорость света.
Квантовая запутанность срезает углы.
Квантовая запутанность кажется сложной и пугающей, но в самом простом смысле запутанность — это просто способ взаимодействия субатомных частиц. И что самое интересное в этом явлении, так это то, что процесс этой связи может происходить быстрее света.
«Если два электрона свести достаточно близко, они начнут вибрировать в унисон, в соответствии с квантовой теорией. Потом, если разделить эти электроны сотнями или даже тысячами световых лет, они все равно будут поддерживать связь друг с другом. Если покачнуть один электрон, другой моментально почувствует эту вибрацию, быстрее скорости света. Эйнштейн думал, что это явление должно опровергнуть квантовую теорию, потому что ничто не может двигаться быстрее света».
Но в 1935 году Эйнштейн, Борис Подольский и Натан Розен попытались опровергнуть квантовую теорию в ходе мысленного эксперимента, который Эйнштейн назвал «жутким действием на расстоянии».
По иронии судьбы, их работа легла в основу так называемого парадокса ЭПР (Эйнштейна — Подольского — Розена), который описывает эту мгновенную связь в процессе квантовой запутанности. Это, в свою очередь, может лечь (и постепенно ложится) в основу многих передовых технологий, таких как квантовая криптография.
Мечты о кротовых норах.
Поскольку ничто с массой не может двигаться быстрее света, вы можете распрощаться с межзвездными путешествиями — во всяком случае в классическом смысле, с ракетами и обычными полетами.
Хотя Эйнштейн и похоронил наши мечты о глубоком космосе со своей специальной теорией относительности, он дал нам новую надежду на межзвездные путешествия со своей общей теорией относительности в 1916 году.
В то время как специальная теория относительности «женит» массу и энергию, общая теория относительно смыкает вместе пространство и время.
«Единственный возможный способ преодолеть световой барьер может быть скрыт в общей теории относительности и искривлении пространства времени, — считает Каку. — Это искривление мы называем «червоточиной», и она теоретически может позволить нам преодолевать огромные расстояния мгновенно, буквально пронзая насквозь ткань пространства-времени».
В 1988 году физик-теоретик Кип Торн — научный консультант и продюсер фильма «Интерстеллар» — использовал уравнения общей относительности Эйнштейна, чтобы предсказать возможное существование червоточин, которые открыли бы нам дорогу в космос. Но в его случае этим кротовым норам необходима была странная экзотическая материя, которая поддерживала бы их в открытом состоянии.
«Удивительный на сегодня факт: это экзотическое вещество может существовать, благодаря странностям законов квантовой механики», — пишет Торн в своей книге «Наука «Интерстеллара».
И это экзотическое вещество может быть когда-нибудь создано в лабораториях на Земле, хотя и в небольших количествах. Когда Торн предложил свою теорию стабильных червоточин в 1988 году, он призвал сообщество физиков помочь ему определить, может ли во вселенной существовать достаточно экзотического вещества, чтобы сделать существование червоточин возможным.
«Это породило много исследований в сфере физике; но сегодня, спустя тридцать лет, ответ до сих пор неясен, — пишет Торн. Пока все идет к тому, что ответ «нет», но, — Мы пока далеко от окончательного ответа».
Я отвечаю за то, что говорю, но не отвечаю за то, что вы слышите.
У чёрных дыр должны быть аккреционные диски, с которых в них падает материя, и после пересечения горизонта событий у материи уже не должно быть способа выбраться обратно. Может ли что-то повлиять на этот порядок вещей?
читать дальшеЕдиножды попав за горизонт событий чёрной дыры, выбраться уже не получится. Нет такой скорости, которая помогла бы выбраться оттуда, для этого не хватит даже скорости света. Но, согласно общей теории относительности, пространство в присутствии массы и энергии искривляется, а слияние чёрных дыр – один из наиболее экстремальных вариантов в природе. Есть ли возможность упасть в ЧД, пересечь горизонт событий, а затем убежать оттуда, пока этот горизонт искажается в результате массивного слияния? Такой вопрос возник у нашего читателя:
Если две ЧД объединятся, возможно ли, чтобы материя, находящаяся внутри горизонта событий одной из ЧД, смогла убежать оттуда? Может ли она убежать и переместиться в другую, более массивную ЧД? А убежать сразу за пределы обоих горизонтов?
Идея, конечно, безумная. Но достаточно ли она безумна, чтобы сработать? Давайте выясним.
Когда время жизни массивной звезды подходит к концу, или при слиянии достаточно массивных останков звёзд, в результате может появиться ЧД. Горизонт событий будет пропорционален её массе, а вокруг неё будет находиться аккреционный диск падающей в неё материи.
Обычно ЧД формируется при коллапсе ядра массивной звезды, происходящем либо после взрыва сверхновой, либо при объединении нейтронных звёзд, или при прямом схлопывании. Насколько мы знаем, каждая ЧД состоит из материи, бывшей ранее частью звезды, поэтому ЧД во многих смыслах – конечная форма звёздных останков. Некоторые ЧД появляются изолированно, иные являются частью двойной системы или даже системы из нескольких звёзд. Со временем ЧД могут не только сблизиться по спирали и слиться, но и поглощать другую материю, падающую внутрь горизонта событий.
В случае шварцшильдовской ЧД падение в неё ведёт к сингулярности и тьме. Неважно, в каком направлении вы будете перемещаться, как сильно ускоряться, и так далее – пересечение горизонта неминуемо ведёт ко встрече с сингулярностью.
Когда что-либо пересекает горизонт событий ЧД снаружи, эта материя оказывается обречена. Всего через несколько секунд она неизбежно встретится с сингулярностью в центре ЧД: в случае не вращающейся ЧД это будет точка, а в случае вращающейся – кольцо. У самой ЧД нет никакой памяти о том, какие в неё упали частицы, и каково было их квантовое состояние. С точки зрения информации остаётся только общая масса, заряд и угловой момент ЧД.
В последние моменты перед слиянием пространство-время вокруг пары ЧД будет искажаться, а материя будет продолжать падать в обе ЧД из окружающего их пространства. Не видно ни одного момента, в который могла бы появиться возможность убежать изнутри горизонта событий наружу.
Тогда можно представит себе ситуацию, когда материя падает в ЧД на последних стадиях слияния, когда ЧД уже готова слиться с другой. Поскольку у ЧД по идее всегда должны быть аккреционные диски, а в межзвёздном пространстве всегда есть летящая куда-нибудь материя, то частицы должны постоянно пересекать горизонт событий. Тут всё понятно, и мы можем рассмотреть частицу, которая только что попала за горизонт событий, в последние моменты перед слиянием.
Может ли она убежать? Может ли она «перепрыгнуть» из одной ЧД в другую? Давайте изучим ситуацию с точки зрения пространства-времени.
Компьютерная симуляция слияния двух ЧД и искажаемого ими пространства-времени. Гравитационные волны испускаются в изобилии, но материя не должна вырваться наружу.
При слиянии двух ЧД само слияние происходит после долгого периода сближения по спирали, во время которого энергия излучается наружу в виде гравитационных волн. Она излучается вплоть до самого последнего момента перед слиянием. Но из-за этого горизонты событий обеих ЧД не сжимаются; эта энергия появляется из-за всё усиливающейся деформации пространства-времени в районе центра масс. Можно представить схожий процесс, в котором бы терялась энергия планеты Меркурий – в результате планета приближалась бы к Солнцу, но от этого свойства Солнца и Меркурия не менялись бы.
Однако в самые последние моменты перед слиянием ЧД горизонты событий начинают искажаться из-за их гравитационного влияния друг на друга. К счастью, специалисты по численным методам теории относительности уже точно подсчитали, как именно это слияние влияет на горизонты событий, и это потрясающе информативный расчёт.
Несмотря на то, что до 5% суммарной массы ЧД до слияния может утечь наружу в виде гравитационных волн, можно заметить, что горизонты событий никогда не сжимаются; между ними появляется связь, они немного искажаются, и потом увеличиваются в объёме. Последний момент важен: если взять две ЧД одинаковой массы, их горизонты событий будут занимать определённый объём. Если слить их и создать одну ЧД двойной массы, то объём, занимаемый горизонтом событий, окажется в четыре раза больше суммарного объёма, который занимали горизонты событий двух ЧД. Масса ЧД прямо пропорциональна её радиусу, а объём пропорционален кубу радиуса.
Мы обнаружили множество ЧД, и у всех у них радиус горизонта событий прямо пропорционален массе. Удвойте массу — удвоится радиус, площадь поверхности горизонта увеличится в четыре раза, а объём – в восемь!
Оказывается, даже если удерживать частицу в неподвижном состоянии внутри ЧД, и сделать так, чтобы она как можно медленнее падала к сингулярности в центре, она всё равно не сможет выбраться из-за горизонта событий. Суммарный объём общего горизонта событий возрастает, а не уменьшается, и вне зависимости от траектории частицы, пересекающей горизонт событий, ей суждено быть навеки проглоченной комбинированной сингулярностью обеих ЧД.
Во многих сценариях столкновений в астрофизике присутствует «выброс» [ejecta], когда материя изнутри объекта вырывается наружу в процессе катаклизма. Но в случае слияния ЧД всё, что было внутри, остаётся внутри; большая часть того, что было снаружи, попадает внутрь; лишь малая часть того, что было снаружи, в принципе может убежать. Если уж что-то упало внутрь, оно обречено, и ничто этого не изменит, чем бы вы ни швырялись в ЧД – даже другой ЧД!
Королевский музей Гринвич подвел итоги ежегодного конкурса лучших снимков небесных тел за год, в 2019 году лучшими выбрали 11 работ.
Фотография ниже, наверное, сама красивая, называется "Сердце Мордора" (настоящее название небесного тела: туманность "Улитка", туманность NGC 7293). По клику - полноразмерное фото.
P.S. небольшое пояснение - все эти фото раскрашиваются компьютером на самом деле, со смещением цветов как рэндом астроном на душу положит (почитать можно здесь), фактически, это художественное изображение электромагнитного поля, поэтому цвета могут отличаться от других фотографий той же туманности. Но красиво.